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Summary 

The SPARD project aims at developing tools to analyze to what extent EU rural development 

measures impact a number of economic, social and environmental objectives that they are 

designed to target. This report describes the econometric test to select the appropriate spatial 

econometric model to estimate the effect of RDP measures on their intended effect (the 

impact indicators). First the method to identify relations between a dependent and potential 

explanatory variables is presented.  Econometric test are given to select the relevant variables 

for the model. This model is tested whether spatial correlation is present or not and if so the 

type of correlation. Finally the econometric specification is tested using standard tests.  

 

This is document is intended to present the general approach within SPARD to specify, 

estimate and test spatial econometric models. It will be used in WP4 and WP5, also by less 

econometrically experienced researchers. For them this document can be used as a manual 

how to perform spatial econometrics in the context of SPARD.  This SPARD document 4.1 is 

a living document to enable adaptations to the SPARD methodology as it will develop during 

the project. This living document can then be used as a manual throughout the project. 
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1 Introduction 

 

1.1 Objective of WP4.1 

The SPARD project aims at developing tools to analyze to what extent EU rural development 

measures impact a number of economic, social and environmental objectives that they are 

designed to target. One important obstacle to the proposed spatial econometric analysis is data 

availability. This is due to two aspects: The first obstacle applies to all impact assessment 

problems, the difficulty to construct a counterfactual situation (what would have happened 

without the policy). The second obstacle is related to the Common Monitoring and Evaluation 

Framework (CMEF), which SPARD is supposed to base its analyses on.  

The CMEF is a relatively new instrument and still under development. Following types of 

indicators are included: baseline indicators (objective- and context-related), input indicators 

(expenditures), output (physical), result (physical and successful) and impact. Baseline 

indicators describe the socio-economic, environmental and farm structure related situation of 

a region, while the other indicators are related to budget, implementation and impact of rural 

development measures. There are still many data gaps and the data delivered by the 

authorities in the member states has not been sufficiently checked yet. In addition, the 

indicators gathered by the framework refer to different spatial units. Baseline indicators, for 

example, are available at NUTS2 level, while input, output, result and impact indicators are 

measured at the programming level. Input, output, and result indicators are available for the 

single RDP measures, while impact indicators measure the outcome of an entire program 

(consisting of a number of RDP measures).  

In SPARD we enable policy analysis to look at causal relationships between characteristics, 

needs, expenditures and results of rural development measures in a spatial dimension. We 

analyse to what extent a spatial econometric approach will be useful to provide information 

on the effect of the RDP measures, and whether the aim reflected by the impact indicators will 

be reached. In WP4 Task 4.1 is the definition of the econometric test to assess the impact of 

RDPs. This follows from the work in WP2 to select relevant variables and the work in WP3 

on the design of logical diagrams and the identification of relations that have to be tested (the 

identification of causal relationships). Task 4.2 proceeds with an analysis of the database for 

spatial patterns. This is followed by Task 4.3, which is the identification and estimation of the 

model at NUTS0 level. In order to prepare for the case study analyses in WP5, the next step is 

Task 4.4, which is the specification of the model to be used at the NUTS2 and NUTS3 levels. 
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Task 4.5 brings together the knowledge gained in WP4 through a description of a general 

methodology for the use of spatial econometrics in Rural Development Programmes. 

 

This report describes the analytical framework used by SPARD. Based on the available 

literature and the expertise of the SPARD researchers, the theoretical assumptions followed 

by SPARD are outlined. Secondly, the expected impacts of EU rural development measures 

are derived both from previous studies and the available literature. Thirdly, under 

consideration of the available data from the CMEF, the theoretical assumptions and expected 

impacts are operationalized for three EU rural development measures, namely modernization 

of agricultural holdings (121), agri-environment measures (214) and diversification into non-

agricultural activities (311). These measures were selected to begin the analysis with. Step-

wise the analysis will be extended to other measures.   

The spatial econometric analysis will be built upon ex-post analysis, i.e. mainly based on the 

input, output and result indicators provided by the RDPs themselves and the baseline 

indicators if available. The objective of the spatial econometric analysis is to estimate to what 

extent the measured values for the impact indicators can be ascribed to the RDP measure 

being examined.  

This econometric analysis starts with a (theoretical) model that describes the causal 

relationships. We build upon the SPARD 3.1 Report (Report on analytical framework – 

conceptual model, data sources, and implications for spatial econometric modeling). The 

spatial scale of the tool will be both NUTS0 and NUTS2. The principal one will be the scale 

of RD programming. In some Member States it is the National scale, in others Federal States 

and for certain RDP measures also the regional scale. To set up the model applicable for the 

regional scale is crucial, since this will provide insight into how spatial heterogeneity within a 

country affects the impact of an RDP measure. Moreover, in many countries it is at the 

regional level that the RDPs are planned and managed. However, the impact indicators need 

to be aggregated to the national (NUTS0) level as well, so that the member state can assess 

the overall effectiveness of its RDP. Lower spatial scales (lower than NUTS2) will be used 

for validation of the model in the case studies. These data will be collected based on 

information available on local RDPs (and their evaluations). 

1.2 Objective of this document  

The main objective of this document is to support the spatial econometric analysis in WP4 

and WP5. In the latter work package, the spatial econometric model has to be developed for 
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the specific case study areas. To stimulate a standard methodology over WP4 and these case 

studies and to support researchers that have any experience in econometrics, but not yet up-to-

date knowledge of spatial econometrics, this document can be regarded as a  manual for the 

spatial econometric analyses within the SPARD project. It will be a living document to enable 

updates in the future to capture the development of the SPARD methodology during the 

project. Being a living document it can truly be a manual for WP4 and WP5 researchers. 

Prerequisites for using this document:  

• Basic Stata knowledge and experience.  

• Basic econometric knowledge (at least decent knowledge of OLS) 

This report will describe the estimation procedure for all SPARD models regardless the 

aggregation level of the analyses and the dependent variable.  

1.3 General methodology of spatial econometric analysis 

Spatial econometric analysis for a RDP measure can be roughly divided in six steps: 

a. Select the RDP measure and its relevant indicator for the assessment. Note that the 

RDP measure might have more than one impact and result indicator;  

b. Check economic theory with respect to the measure (and indicator) 

c. Specifying deterministic relationships (conceptual framework) 

d. Identifying dependent and independent variables and a functional form 

e. Testing the variables and relations 

f. Estimation of the model. 

 

The conceptual framework of the spatial econometric analysis is given in SPARD document 

3.1 (Uthes et al., 2011). CMEF is the basis for our analysis, describing roughly the relation 

between a RDP measure and the intended effect;  the baseline variables. These baseline 

variables are for instance growth in labour productivity, increase in gross value added in 

agriculture etcetera. In WP4 we analyse econometric literature for an economic theory and 

corresponding (spatially) econometric models. These truly econometric models are linked to 

the conceptual models presented in WP3. In paragraph 2.1 procedure for the selection of 

variables is presented. The first two steps are  
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1.4 Logical Diagrams of Impact (LDI) and measures 

The Logical Diagrams of Impact (LDI) present the relevant deterministic relationships per 

measure. They depict all factors that affect the base line indicator(s), including of course the 

measure itself, the result and the output indicators. For measure 121 and 311 the LDI is 

presented. These measures will be elaborated upon in WP4 to demonstrate the possibilities of 

spatial econometrics. The econometric literature and the LDI provide suitable variables and 

functional form for the spatial analysis. Given the availability of suitable data the model can 

be estimated. The next paragraph describes the procedure to come to the best empirical 

model.   

 

 

Figure 1 Logical Diagramme of Impact for measure 121 modernisation 
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Figure 2 Logical Diagramme of Impact for measure 214 

 

Figure 3 Logical Diagramme of Impact for measure 311 
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1.5 Selection of variables, functional form and tests 

The empirical investigation provides estimates of unknown parameters in the model and often 

attempts to measure the validity of the propositions against the behaviour of observable data. 

The next sections describe a number of techniques used in this context.   

1.6 Outline of the report 

The selection of the dependent and independent variables is given in chapter 2, where also 

tests are presented to obtain the best specification based on the available data. In chapter 3 the 

spatial aspects are elaborated and tests are provided to select the best spatial functional form. 

Tests for the econometric specification are given in chapter 4.  

The report is conceptualized as a ‘living document’ with possible changes during the 

operation of SPARD in order to keep this central document up to date with progress in the 

data availability and results from the spatial econometric analysis. It will also be updated 

based on the feedback from WP5. 

The software used to illustrate the tests is Stata (see the Stata on line help and Cameron and 

Trivedi, 2010) and GeoDa (see the GeoDa website and Anselin, 2005). GeoDa is a free 

software package that conducts spatial data analysis, geovisualization, spatial autocorrelation 

and spatial modeling. With GeoDa comes a free workbook entitled Exploring Spatial Data 

with GeoDa: A Workbook (Anselin, 2005) 
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2 Selection procedure of variables 

 

2.1 Selection of variables based on the economic theory 

The selection and preparation of the data can be quite labour intensive. Therefore, this chapter 

proposes a procedure with criteria how to select the relevant variables for the spatial and data 

analysis. The procedure of selecting variables for the econometric analysis is specific for each 

RDP measure. First of all, each measure has its own impact and result indicator as indicated 

by the Logical Diagrams of Impact (see Figure 1 to Figure 3 in paragraph 1.4).  Secondly, 

each RDP measure is affected by different developments. Finally, the impact of the RDP 

measures differs across the regions.   

 

The composition of a database of the gross list of variables requires a number of stages:  

1. Select the RDP measure for the assessment. Note that the RDP measure might have 

more than one impact and result indicator;  

2. Check the economic literature for relevant indicators that might have an impact on the 

impact indicator of the RDP measure to be assessed (see stage 1). In this stage, one 

can also consider the relevance of time- or space lagged variables to be included; 

3. Check the availability of data (OECD; CMEF database; Metabase; Cambridge 

Econometrics, for instance, for NUTS 2 or 3 levels; or other databases for NUTS 5 

level). Take into account the opportunities to construct spatially and time-lagged 

variables; 

4. Compare the variables required from a theoretical perspective (stage 2) and the data 

available (stage 3). Note that the inclusion of similar variables is advocated at this 

stage. The selection of variables to be included in the actual regression equations will 

be discussed in the next paragraphs and in chapter 3 on the spatial data analysis. 

Identify the omitted variables as well;  

5. Compose the Stata database and GeoDa database  

 

In the next paragraph, we will check the correlation coefficients between dependent and 

independent variables.  
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2.2 Check for correlation with dependent variable  

Econometric estimation techniques rely on the correlation between the independent and 

dependent variables. The list of dependent and independent variables resulting from the 

selection procedure in paragraph 2.1 might be quite long. The spatial data analysis and 

preparation of the data for the econometric regression analysis might be labour intensive. One 

can consider to exclude the variables that do not, or hardly, correlate to any of the dependent 

variables from the database in order to save time in the spatial data analysis or the 

econometric regression analysis. Variables that are important from a theoretical perspective 

should be included in the model with respect to the interpretation of the results. Preferably, an 

independent variable correlates to dependent variables but does not correlate to other 

independent variables.  

 

2.3 Tests for correlations between independent and dependent variables. 

Stata command for running correlation matrix 

correlate depvar1 depvar2 var1 var1b var2 var3  

Or  

pwcorr depvar1 depvar2 var1 var1b var2 var3, sig 

The sig  option provides the statistical significant levels of the correlation coefficients. For 

more information see Cameron and Trivedi (2010, p. 86) or Stata help on correlate  or 

pwcorr . 

 

The resulting correlation matrix C of the variables is a diagonal matrix. This means that 

element cij of matrix C is equal to cji. The maximum value of the elements is 1, and the 

minimum value is -1. Variables with values of correlation coefficients close to zero have no 

correlation. We propose the following rules of thumb for the selection of variables to be 

included in the econometric analysis: 

 

Rule 1: An independent variable that has no or insignificant correlation coefficient with a 

dependent variable can be considered for exclusion for further analysis. If the 

independent variable is included because of theoretical reasons, one could maintain it 

for further analysis. 
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Rule 2: An independent variable that has a significant correlation coefficient with a 

dependent variables will be included for further analysis.  

 

In addition to Rule 2, we propose to check the correlation coefficients between independent 

variables that have significant correlation coefficients with the dependent variable. An 

additional rule has to be considered: If independent variables are close to perfectly collinear 

(statistically significant correlation coefficients), then numerical instability (of the estimated 

parameter) may cause problems. The parameters may be estimated very imprecisely. 

One can consider to include the temporally and/or spatially lagged variables in this checking 

procedure as well.  
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3 Spatial analyses of the data 

3.1 Choice of weight matrix  

An important difference between spatial and traditional (a-spatial) statistics is that spatial 

statistics integrate space and spatial relationships directly into their mathematics. 

Consequently, the conceptualization of spatial relationships prior to analysis is very important 

(Anselin et al., 2008). Weight matrices are a necessity when studying the relationships 

between regions. Whereas for relationships over time the distance in time can be measured in 

different quantities (days, weeks, years) – but these are always related to each other – distance 

in space is less clear. Is the distance measured from border to border, or from centre to centre, 

in a straight line or following transport lines? Do distances across other regions or across 

water bodies also count?  

Weight matrices are used to model the spatial relation between observations. Binary weight 

matrices contain information for every ‘region A’-‘region B’ combination whether they are to 

be considered neighbours or not (0 or 1). This means that it is assumed that spatial 

autocorrelation in the region under study only occurs between nearest neighbouring spatial 

units, whatever is their size and shape. Alternatively, weight matrices made up of weights 

representing various types of spatial connections can be used to represent the nuances of 

spatial associations in real-world circumstances, trying to solve the problem of topological 

invariance (Getis, 2009; Harris et al., 2011). In such cases, a weight matrix generally consists 

of weights between 0 and 1 for every A-B combination; those weights then sum to 1 by row 

and/or column. However, for the Exploratory Spatial Data Analysis a binary approach is most 

appropriate.  

Four types of binary weight matrices are commonly used, namely nearest neighbour distance 

cut-off, rook contiguity and queen contiguity, and they are offered by the free GeoDa 

software. However, not all of these four types are equally useful. 

 

Nearest neighbours  

This analysis renders a robust type of matrix, as it always assigns neighbours to a region, 

whether they actually share borders or not. The number of neighbours is the same for all 

regions, and it is identified by a number k. Depending on the size and number of regions, 

settings vary; 10 is tractable in the NUTS2 setting. The robustness of this matrix lies in the 

fact that islands pose no problems. However, a disadvantage is that distances between 
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‘neighbours’ can vary widely across the map (e.g. North Sweden vs. the Netherlands). If 

regions are of equal size, this is the most convenient choice. 

 

Distance cut-off  

A distance cut-off works in a way similar to the nearest neighbours approach, except that here 

all regions within a certain distance range are considered neighbours. Some regions that are 

far off (Cyprus, Azores, Iceland) may end up without neighbours, which often leads to 

problems in software for spatial analyses. If population densities and travel times are 

homogenous across all regions, this is a very realistic choice, but islands can create problems. 

 

Rook and Queen contiguity 

Pure contiguity matrices are the most basic concept: whoever touches your region is 

considered a neighbour. This renders islands neighbourless, and therefore some models will 

not work with this type, including LISA analyses (see Anselin, 2005: 140). Rook contiguity 

differs from Queen contiguity in that corner contacts are not counted in rook contiguity. 

However, in a European context these are rare anyway, although they do occur in the United 

States and Africa. These are the most commonly used types of weight matrix outside LISA 

analyses. Yet the fact that the shape of regions decides which regions are neighbours can lead 

to strange results if two regions share a narrow border but otherwise extend away from each 

other. 

3.1 ESDA analysis: Life-long learning example 

The Exploratory Spatial Data Analysis is a first step to check whether spatial patterns exist, 

or, in other words, whether high and low values are suspiciously sorted in space. We show 

how the procedure works with two examples using the freely available tool GeoDa 

(http://geodacenter.asu.edu/). The analysis is done for one specific year, and uses a weight 

matrix of choice; in this case, we use k-10 nearest neighbours. 

In a panel setting, the analysis can be repeated for all available years. However, if spatial 

patterns exist for one year, that is already enough to merit the inclusion of spatial 

econometrics in a model. Performing an analysis for the first and last available year can 

however be relevant in order to visually estimate whether spatial concentration increases or 

decreases over time. 
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We choose two variables which will be used as dependents in the analyses performed within 

the project. However, LISA (Local Indicators of Spatial Autocorrelation) can and should also 

be used to investigate independent variables to look for possible sources of bias (see Anselin, 

2005:140). Finally, it can be extremely useful to perform a LISA analysis on the residuals 

from a regression, to see whether any spatial pattern has remained undetected by the variables 

already in the regression. 

 

Life-long learning is important for human capital formation in an area, which is important 

both for the technological level, productivity and innovativeness of current activities, and for 

the attractiveness of a location for new activities. Moreover, the variable may have an impact 

on the participation rate in new training initiatives offered through or with the help of 

European funding. 

We measure life-long learning as the percentage of the labour force (i.e., persons aged 25-64) 

participating in education and training. Among the European NUTS-2 regions in 2009, this 

percentage ranges from 0.5% to over 35% (see figure below). Especially Denmark, Norway, 

Sweden, the Netherlands, and the UK stand out in a positive sense; France and Spain show a 

mixture of higher and lower values, with the two highest values in France close to other high-

scoring regions in Spain and Germany.  

The map in Figure 4 shows the descriptives. Regions outside the EU are not displayed in 

Figure 4. The Canaries and French overseas territories are left out for mapping regions, 

because spatial econometrics make no sense for these outlying regions at NUTS2 level. The 

map in Figure 5 then shows the actual clusters, defined by Local Indicators of Spatial 

Autocorrelation (LISA): we see clusters of high values grouped together (e.g., the UK; High-

High means high values where the neighbours have high values too), and likewise for low 

values (e.g., Poland); and we see which regions have a low value in or next to a cluster of 

high values (e.g., North-western France; high-low). In this case, these regions would be areas 

where life-long learning is taken up very well in the vicinity, but the region itself lags. 

Theoretically, high ‘spikes’ in an area of low values could also exist, and they possibly do at a 

lower spatial scale if we would distinguish cities from their hinterlands. 

The conclusion from these maps is that spatial patterns exist, and that it might be meaningful 

to perform a spatial analysis on them to see whether there are actual spill-overs, i.e. 

influences, between regions. 
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Figure 4 Life-long learning in Europe, by NUTS2 region, for 2009.  

The variable is measured as the % of 25 to 64 year olds participating in education and 

training. 
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Figure 5 LISA map for life-long learning in Europe, by NUTS2 region, for 2009. 

3.2 Spatial autocorrelation and Moran’s I: Average farm size example 

As a second example, we look at average farm size, using data for the year 2007. The pattern 

for average farm size shows a band of large farms from Denmark to the Slovakia and dark 

areas in central and northern France as well as Scotland, see Figure 6. Small farms 

predominate in Italy and South-Eastern Europe. 
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Figure 6 Average area farm size in Europe, in ha, by NUTS2 region, for 2007. 
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Figure 7 Scatterplot of average area farm size in Europe in a region (x-axis) and its 

neighbouring regions (y-axes) for 2007. 

 

Moran’s I provides a measure of the spatial correlation between neighbours. Values range 

from -1 (indicating perfect dispersion) to +1 (perfect correlation), with 0 indicating a random 

spatial pattern. For statistical hypothesis testing, that indicates whether or not we can reject 

the null hypothesis. Moran's I values can be transformed to z-scores. In this case, the null 

hypothesis would be that there is no spatial clustering. The z-score is based on a 

randomization null hypothesis computation. in which values greater than 1.96 or smaller than 

-1.96 indicate spatial autocorrelation at the 5% significance level. For more information, see 

ESRI’s help page. 

The graph in Figure 7 shows how observations in a region (on the horizontal axis) are related 

to values in surrounding regions (on the vertical axis; the axes cross at the overall average 

value). The slope of the blue line, basically the regression line fitted through the points, is 

Moran’s I, which in this case is 0.47. (This value has a meaning especially when compared to 

other variables, as long as the same regions and weight matrix are used.) 
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Figure 8 LISA map for average area farm size in Europe, by NUTS2 region, for 2007. 

We see on the LISA map (Figure 8) that the clusters in Scotland and central France are indeed 

recognized, but Denmark is not significantly part of a cluster with eastern Germany and the 

Czech Republic. There is a strong Eastern European cluster of low values, which extends to 

Italy. However, Corsica has an exceptional high value compared to its neighbours. Likewise 

the north of Ireland has small holdings compared to the high values in Northern Ireland and in 

nearby Scotland. 

 

4 Testing the econometric specification 

4.1 Test for spatial model 

Introduction  

Many researchers use spatial econometrics in its simplest form, but they might not label it as 

such. Controlling for spatial heterogeneity using regional dummies or a distance to the nearest 

airport is a way of implementing spatial econometrics. Among the more advanced models, 

however, two main approaches are in use, covering situations where: 

• either the outcome in one region is affected by the outcome in neighbouring regions (a 
spatial lag model); 
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• or the outcome in one region is affected by unknown characteristics of the 
neighbouring regions (a spatial error model). 

 

4.1.1 Spatial lag model 

An example of the first type would be a house price. Obviously, the price of a house depends 

on its age and size, the number of rooms, the presence of a garage, etc. However, the 

attractiveness (reflected in the prices) of nearby houses also have an impact.1 In vector 

notation, we estimate  

 

instead of  

 

with X being a vector of house characteristics and P the price of a house;  is the coefficient 

estimated for the spatial lag. The most distinguishing aspect of the first formula is the vector 

W; this is the spatial weights matrix as discussed in section 3.1. Although this is a crucial 

element in a spatial econometric estimation, its function is fairly simple: it ‘depreciates’ the 

effects of the other observations by some distance-related characteristic. The most common 

characteristics are Euclidean distance (squared), travel time, and border contiguity. 

We assume that the data that will be used have a panel structure (observations in space and 

time). As a result, we use a standard fixed effects panel data regression model in Stata for the 

spatial lag model.:  

 

. xtreg P X Pt1_wq, fe 

. estimates store FE 

 

In the Stata commands X represents a list of independent variables, and Pt1_wq is the spatial 

lagged dependent variable. Note that the spatially lagged dependent variable is also lagged in 

time with one period. The construction of the spatially lagged variable is discussed in Section 

4.1.4. The fixed effects are the regional specific intercepts.  

                                                 

1 The example is not perfect, as all housing prices in the neighbourhood are also influenced by an unobserved 

“neighbourhood quality” variable.  
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Instead of using the fixed effect regression model, we can also use the random effects model. 

Then the regional specific effects are not fixed but assumed to be randomly drawn from a 

distribution estimated. The random effects panel data regression model in Stata is: 

 

. xtreg P X Pt1_wq, re 

. estimates store RE 

 

More information can be found on Stata help on xtreg .  

 

Fixed effects versus random effects  

 

If effects are fixed, the RE estimator is inconsistent. The FE estimator (or within estimator) is 

less desirable because it assumes only within variation which leads to less-efficient estimation 

results and it is not able to estimate coefficients of time invariant regressors. With the 

Hausman test, the choice between fixed-effects and random effects models can be tested with 

a χ2-test. The null-hypothesis is that individual or regional effects are fixed: .  

 

. hausman FE RE, sigmamore 

 

Here, FE and RE are the data on the coefficients for the fixed effects and random effect 

regression estimations respectively. The null hypothesis is rejected if the probability of the 

χ
2(k) is smaller than 0.05 where k is the number of coefficients to be tested in the model. This 

means that the RE model estimation is preferred over the FE model estimation.  Cameron and 

Trivedi (2010, p. 266 and further) present an example of the Hausman test.  

 

4.1.2 Spatial error model 

For the second case, the so-called spatial error model, we can think of productivity in a 

factory. If we have information on just inputs of labour and capital as well as the sector of a 

firm, and estimate 
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then a map of the error terms  might show a spatial pattern – most likely, clusters of high and 

low values together. Those unobserved effects are probably agglomeration effects, and if we 

cannot control for them, they will distort the estimates for , and . We can prevent this by 

setting 

 

with  as the coefficient estimated for the spatial error, and W again as the spatial weight 

matrix. u is the unobserved non-spatial error for every observation. 

 

 

4.1.3 Testing for spatial lag or spatial error model 

Tests exist to decide whether spatial econometrics are appropriate in a regression, and if so, 

whether a spatial lag or a spatial error model is more useful. Such tests are best executed in 

GeoDa, where an OLS regression command is available and will always report test results. 

More information is available at http://geodacenter.asu.edu/node/397#ols. Testing can also be 

done in Stata through spmat , but these unfortunately require a manually created weight 

matrix different from the ones used by GeoDa and the Stata module sppack , and investing 

time in producing yet another weight matrix is probably more inconvenient than using 

GeoDa. 

GeoDa reports five statistics after OLS, of which the fifth can be ignored. The other four are 

two statistics for the Lag model and two for the Error model, each once regular and once 

robust. Anselin (2005) gives the following decision tree to decide which model is most 

appropriate: it boils down to looking at the regular statistics first, and using the robust 

alternatives only if the regular statistics are significant for both Lag and Error.  
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Figure 9 Decision model, from Anselin (2005). 

 

 

4.1.4 Creating spatially lagged variables 

To calculate a spatially lagged variable, we use the packages shp2dta  and spmat  for Stata. 

We then read a standard GISCO map into STAT using shp2dta . This produces two files, a 

database file and a coordinates file. For more information, use help shp2dta  within Stata. 
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ssc install shp2dta 
ssc install sppack 
 
shp2dta using "NUTS_RG_10M_2003.shp", database(nuts 2db) 

coordinates(nuts2coord) replace 
 

We now keep only the NUTS2 regions in the database by dropping all others, and then 

likewise for the coordinates database. 

use nuts2db, clear 
describe 
rename NUTS_ID nuts_id 
drop if STAT_LEVL!=2 
save "nuts2db.dta", replace 
 
use nuts2coord, clear 
merge m:1 _ID using nuts2db, keep(match) keepusing(  ) 
drop POLY_ID-_merge 
save "nuts2coord.dta", replace 
 

We now make a queen contiguity matrix, which we call nuts2q.  Subsequently, we include 

the regional ID’s in our data file and set it to use the queen contiguity matrix nuts2q . 

Finally, we create a spatially lagged variable of var  using said matrix, and we choose to call 

this variable var_wq . We can now use this variable just like any ordinary variable in 

regressions. For more information, see help spmat  in Stata. 

use nuts2db.dta 
spmat contiguity nuts2q using nuts2coor, id(_ID) 
spmat save nuts2q using nuts2q.spmat 
 
use datafile.dta 
rename region NUTS_ID 
merge m:1 NUTS_ID using nuts2db, keepusing(_ID) 
rename NUTS_ID region 
drop if _merge==1 
 
spmat use nuts2q using nuts2q.spmat 
spmat lag var_wq nuts2q var 

 

4.2 Model specification test (diagnostics)  

A model specification error can occur when one or more relevant variables are omitted from 

the model or one or more irrelevant variables are included in the model. If relevant variables 

are omitted from the model, the common variance they share with included variables may be 

wrongly attributed to those variables, and the error term is inflated. On the other hand, if 

irrelevant variables are included in the model, the common variance they share with included 

variables may be wrongly attributed to them. Model specification errors can substantially 

affect the estimate of regression coefficients. This section presents a summary of chapter 2 of 

the online Stata web book: 
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http://www.ats.ucla.edu/stat/Stata/webbooks/reg/chapter2/statareg2.htm. 

The advantage of using this source is that it uses examples of Stata commands and estimation. 

The online version is much more elaborated than the summary presented here.  

This section will emphasize a number of specification test  

• Independence of observations: Durbin –Watson test, see section 4.2.1 

• Endogeneity of regressors Durbin-Wu-Hausman test, see section 4.2.2 

• Omitted variables: Ramsey test, see section 4.2.3 

• Multicollinearity, see section 4.2.4 

• Homogeneity test, see section 4.2.5 

• Normality test, see section 4.2.6 

 

4.2.1 Test on independence of observations 

Econometric estimation procedures usually assume the IID (identically and independently 

distributed) property of the errors which means that the errors associated with one observation 

are not correlated with the errors of any other observation cover several different situations. 

Consider the case of collecting data from students in eight different elementary schools. It is 

likely that the students within each school will tend to be more like one another than students 

from different schools, that is, their errors are not independent. Another way in which the 

assumption of independence can be broken is when data are collected on the same variables 

over time. Let us say that we collect truancy data every semester for 12 years. In this situation 

it is likely that the errors for observation between adjacent semesters will be more highly 

correlated than for observations more separated in time. This is known as autocorrelation (in 

time series context). When you have data that can be considered to be time-series you should 

use the dwstat command that performs a Durbin-Watson test for correlated residuals. 

We do not have any time-series data, so we will use the elemapi2  dataset and pretend that 

snum indicates the time at which the data were collected. We will also need to use the 

tsset  command to let Stata know which variable is the time variable.  

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2 
tsset snum 
       time variable:  snum, 58 to 6072, but with g aps 
        
regress api00 enroll 
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( output omitted ) 
 
dwstat 
 
Number of gaps in sample:  311 
Durbin-Watson d-statistic(  2,   400) =  .2892712 
 

The Durbin-Watson statistic has a range from 0 to 4 with a midpoint of 2. The observed value 

in our example is very small, close to zero, which is not surprising since our data are not truly 

time-series. A simple visual check would be to plot the residuals versus the time variable. 

 

4.2.2 Test on endogeneity of regressors 

There is an endogeneity problem if the coefficient of the variable res_hat i s statistically 

significant. As a consequence, the regression model has to be estimated by Instrumental 

Variables (IV) techniques to take into account the endogeneity of regressors. More 

information on IV-estimators can be found at the Stata help function. 

 

Regress depvar var1 var2 var3 
Predict res_hat  
Regress depvar res_hat var1 var2 var3 
 

More information on the endogeneity test can be found on Cameron and Trivedi (2010, pp. 

188). 

 

4.2.3 Test on omitted variables: Ramsey test 

The ovtest  command performs a regression specification error test (RESET) for omitted 

variables.  It also creates new variables based on the predictors and refits the model using 

those new variables to see if any of them would be significant.   

ovtest 
 
Ramsey RESET test using powers of the fitted values  of api00 
      Ho:  model has no omitted variables 
                F(3, 393) =      4.13 
                Prob > F =      0.0067 

The ovtest  command in the example above indicates that there are omitted variables.  

More information on the Ramsey test can be found on Cameron and Trivedi (2010, pp. 98-

100) or at the Stata help on ovtest .  
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4.2.4 Test on multicollinearity of explanatory variables 

When there is a perfect linear relationship among the predictors, the estimates for a regression 

model cannot be uniquely computed. The term collinearity implies that two variables are near 

perfect linear combinations of one another. When more than two variables are involved it is 

often called multicollinearity, although the two terms are often used interchangeably.  

The primary concern is that as the degree of multicollinearity increases, the regression model 

estimates of the coefficients become unstable and the standard errors for the coefficients can 

get wildly inflated. In this section, we will explore some Stata commands that help to detect 

multicollinearity.  

We can use the vif  command after the regression to check for multicollinearity. vif  stands 

for variance inflation factor. As a rule of thumb, a variable whose VIF values are greater than 

10 may merit further investigation. Tolerance, defined as 1/VIF, is used by many researchers 

to check on the degree of collinearity. A tolerance value lower than 0.1 is comparable to a 

VIF of 10. It means that the variable could be considered as a linear combination of other 

independent variables. Let us first look at the regression we did from the last section, the 

regression model predicting the variable api00 from the variables meals, ell and emer and then 

issue the vif  command.”  

More information on the Ramsey test can be found on Cameron and Trivedi (2010, p. 379).  

4.2.5 Test on homogeneity  

One of the main assumptions for the ordinary least squares regression is the homogeneity of 

variance of the residuals. If the model is well-fitted, there should be no pattern to the residuals 

plotted against the fitted values. If the variance of the residuals is non-constant then the 

residual variance is said to be "heteroscedastic”. There are two test for heteroscedasticity:  
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Now let's look at a couple of commands that test for heteroscedasticity. The first test on 

heteroscedasticity given by itmest  is the White's test and the second one given by 

hettest  is the Breusch-Pagan test. Both test the null hypothesis that the variance of the 

residuals is homogenous. Therefore, if the p-value is very small, we would have to reject the 

hypothesis and accept the alternative hypothesis that the variance is not homogenous. 

estat imtest 
 
Cameron & Trivedi's decomposition of IM-test 
 
---------------------------------------------------  
              Source |      chi2    df      p 
---------------------+-----------------------------  
  Heteroskedasticity |      18.35      9    0.0313 
            Skewness |      7.78      3    0.0507 
            Kurtosis |      0.27      1    0.6067 
---------------------+-----------------------------  
               Total |      26.40    13    0.0150 
---------------------------------------------------  
estat hettest 
Breusch-Pagan / Cook-Weisberg test for heteroskedas ticity  
        Ho: Constant variance 
        Variables: fitted values of api00 
        chi2(1)      =    8.75 
        Prob > chi2  =   0.0031 

So in this case, the evidence is against the null hypothesis that the variance is homogeneous. 

These tests are very sensitive to model assumptions, such as the assumption of normality. 

Therefore it is a common practice to combine the tests with diagnostic plots to make a 

judgment on the severity of the heteroscedasticity and to decide if any correction is needed for 

heteroscedasticity. In our case, the plot above (to be added) does not show too strong an 
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evidence. So we are not going to get into details on how to correct for heteroscedasticity even 

though there are methods available.  

4.2.6 Test on distribution of the residuals 

Normality of residuals is only required for valid hypothesis testing, that is, the normality 

assumption assures that the p-values for the t-tests and F-test will be valid. Normality is not 

required in order to obtain unbiased estimates of the regression coefficients. OLS regression 

merely requires that the residuals (errors) be identically and independently distributed (IID). 

Furthermore, there is no assumption or requirement that the predictor variables be normally 

distributed. If this were the case than we would not be able to use dummy coded variables in 

our models.  

After we run a regression analysis, we can use the predict  command to create residuals and 

then use commands such as kdensity , qnorm  and pnorm  to check the normality of the 

residuals. More information on qnorm  and pnorm can be found on the help function of 

Stata http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm 

Let us use the elemapi2  data file for an example on the kdensity statement  Let us 

predict the academic performance (api00) from the percentage receiving free meals (meals), 

the percentage of English language learners (ell), and percentage of teachers with emergency 

credentials (emer).  

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2 
regress api00 meals ell emer 
 
  Source |      SS      df      MS          Number of obs =    400 
---------+------------------------------    F(  3,   396) =  673.00 
   Model |  6749782.75    3  2249927.58     Prob > F      =  0.0000 
Residual |  1323889.25   396  3343.15467    R-squar ed    =  0.8360 
---------+------------------------------    Adj R-s quared =  0.8348 
   Total |  8073672.00   399  20234.7669    Root MS E      =   57.82 
 
--------------------------------------------------- ----------------- 
   api00 |      Coef.   Std. Err.      t    P>|t|      [95% Conf. Interval] 
---------+----------------------------------------- ----------------- 
   meals |  -3.159189   .1497371    -21.098   0.000       -3.453568   -2.864809 
     ell |  -.9098732   .1846442     -4.928   0.000       -1.272878   -.5468678 
    emer |  -1.573496    .293112     -5.368   0.000       -2.149746   -.9972456 
   _cons |   886.7033    6.25976    141.651   0.000        874.3967    899.0098 
--------------------------------------------------- --------------------------- 

We then use the predict  command to generate residuals.  

predict r, resid 
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Below we use the kdensity  command to produce a kernel density plot with the normal  

option requesting that a normal density be overlaid on the plot. kdensity  stands for kernel 

density estimate. It can be thought of as a histogram with narrow bins and moving average, 

see the Stata output below.  

kdensity r, normal 
   

   

There are also numerical tests for testing normality. Another test available is the Shapiro-Wilk 

W test for normality. The swilk  command performs the Shapiro-Wilk W test for normality:  

swilk r 
 
                 Shapiro-Wilk W test for normal dat a 
 Variable |    Obs          W        V         z   Pr > z 
 ---------+---------------------------------------- --------- 
        r |    400    0.99641    0.989    -0.025  0 .51006 

The p-value  is based on the assumption that the distribution is normal. In our example, it is 
very large (.51), indicating that we cannot reject that r  is normally distributed.  

 

(Source: section 2.2 in 
http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm) 

  



 

 
33 

 

4.3 Tests on coefficients  

4.3.1 Test on linear restrictions of coefficients 

 

Testing a single coefficient  

Suppose one of the variables VAR1 in our regression has a coefficient β1. The hypothesis we 

would like to test is whether β1 is equal to 0. If this hypothesis is rejected, the coefficient β1 of 

VAR1 is significantly different from 0. Stata uses a WALD test for testing the hypothesis, see 

C&T406. To test H0: β1=0, we have 

 

. * Testing a single coefficient equal to 0 

. Test beta1 

  ( 1) beta1 = 0  

        Chi2(  1) =  70.80 

      Prob .> chi2 =   0.000 

 

The null-hypothesis is rejected if the probability is smaller than 0.05. As a consequence, the  

coefficient of variable VAR1 is significant. If the null-hypothesis is not rejected, one can 

consider to exclude the variable from the regression equation. 

 

Testing multiple coefficients  

Suppose we have the variables VAR1 to VAR3 in our regression with coefficient β1 to β3. The 

hypothesis we would like to test is whether β1 is equal to 0, and whether the sum of the  

coefficients of the variables VAR2 and VAR3 is equal to1. If this hypothesis is rejected, the 

coefficient β1 of VAR1 is significantly different from 0, and the sum of the coefficients of 

VAR2 and VAR 3 is not equal to 1. Stata uses a WALD test for testing the hypothesis, see 

Cameron and Trivedi (2009, p. 406). To test H0:  β1=0 and β2+ β3=1, we have 

 

. * Testing two hypotheses jointly 

. xtreg y VAR1 VAR2 VAR3 VAR4, fe 

. Test (beta1) (beta2 + beta3 = 1) 

  ( 1) beta1 = 0  

  ( 2) beta2 + beta3 = 1 

        Chi2(  2) = 122.29 

      Prob .> chi2 =   0.000 
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If the mtest  option is added to the multiple tests command in Stata, each hypothesis is tested 

in isolation as well, i.e.  

. Test (beta1) (beta2 + beta3 = 1), mtest 

 

More information on testing linear restrictions can be found in Cameron and Trivedi (2009, 

403-409) or the Stata help on test . 

4.3.2 Test on structural change  

LR test on two models, one restricted model and one unrestricted model (this is not the same 

as imposing linear restrictions). 

 

4.3.3 Tests on linearity in variables 

This is more a procedure of trial and error than a straightforward test. In linear regression 

models, variables are either nominal variables or dummy variables. Nominal variables are 

included as linear function of the dependent variable, in other words . Alternatively, one can 

use quadratic or third-order polynomial of nominal variables to add to linear regression 

equations.  

 

. * Testing two hypotheses jointly 

. xtreg y VAR1 VAR2 VAR3 VAR4, fe 

. estimate store Regr1 

. generate VAR1sq = VAR1*VAR1 

. xtreg y VAR1 VAR1sq VAR2 VAR3 VAR4, fe 

. estimate store Regr2 

. LRtest Regr1 Regr2, force 

 

To test whether higher-order polynomials of nominal functions add explanatory power to the 

estimation one could perform a Likelihood Ration test (Cameron and Trivedi, 2010, p. 416). 

In addition, one has to check two aspects. First, is the coefficient of VAR1sq significant. 

 

Secondly, is the LR test rejected, then VAR1sq has significantly additional explanatory power 

for the regression estimation and has to be maintained.  
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One should keep in mind that VAR1sq might correlate significantly to VAR1. If this is the 

case, then the results of the estimation with VAR1sq might be biased.  

 

4.4 Goodness of fit tests of the model  

The goodness of fit of a statistical model describes how well it fits a set of observations. 

Measures of goodness of fit typically summarize the discrepancy between observed values 

and the values expected under the model in question. The most commonly used measure of 

goodness of fit is the R-squared statistic. Goodness of fit measures can be used in statistical 

hypothesis testing, e.g. to test for normality of residuals, to test whether two samples are 

drawn from identical distributions, i.e. Kolmogorov–Smirnov test. 

 

5 Concluding remarks 

In this document the general econometric test to assess the impact of RDPs are presented. 

In WP4 we will focus on (modelling) a selection of indicators for Rural Development 

Measures that differ with respect to impact and provide an overview of the relevant aspects of 

RDPs. We analyse which relations between Rural Development Indicators (and other data 

available) are affected by spatial interactions and thus have to be tested using spatial 

econometrics. In the forthcoming document 4.2 the database is analysed for spatial patterns. 

Explanatory Spatial Data Analysis (ESDA) to assess the spatial distribution of the relevant 

data at the relevant scale level (NUTS0-NUTS2-NUTS3). To apply ESDA the weight matrix 

has to be adjusted to each relevant scale level. 

Thereafter the model is specified and estimated at NUTS0 level - EU wide with focus on the 

variation between the member states. The difference in impact of RD Measures is explained at 

member state level. Then the model for the case studies - EU-depth (NUTS2 and NUTS3 

level) is specified in a generic form for WP5. The necessary information is provided by the 

case studies. Finally we report on general methodology with recommendations for use in EU 

RDPs. 
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